Math 676 * Fall 2014 * Victor Matveev

Course Outline					
Lecture	Sections	Торіс			
1 (9/4)	1.1-1.7	Review: 1D Flows; 2D Phase Space and Nullclines	р. 23		
2 (9/8)	2.1-2.3	Review: Linear Systems and Diagonalization p.			
3 (9/11)	2.4-2.6	Review: Fundamental Solution Theorem for Linear Systems			
4 (9/15)	2.7	Linear Systems: Stability p.			
5 (9/18)	2.8	Non-autonomous Systems and Floquet Theory p.6			
6 (9/22)	3.1-3.3	Existence and Uniqueness Theorem p. 101			
7 (9/25)	3.4-3.5	Dependence on Parameters; Maximal Interval of Existence	p. 101		
8 (9/29)	4.1-4.4	Flows, Global Existence, Linearization	р. 159		
9 (10/2)	4.5-4.6	Stability; Lyapunov Functions and Hamiltonian Systems	p. 159		
10 (10/6)	4.7-4.8	Topological Equivalence; Hartman-Grobman Theorem	p. 159		
11 (10/9)	4.9-4.10	Limit Sets, Attractors & Basins	p. 159		
12 (10/13)	4.11-	Stability of Periodic Orbits; Poincare Maps	p. 159		
	4.12				
13 (10/16)		Review for Midterm Exam			
14 (10/20)		Midterm Exam			
15 (10/23)	5.1-5.3	Stable and Unstable Manifolds; Heteroclinic Orbits	р. 192		
16 (10/27)	5.4	Local Stable Manifold Theorem	p. 192		
17 (10/30)	5.5-5.6	Global Stable Manifolds and Center Manifolds	р. 192		
18 (11/3)	6.1-6.4	Nonhyperbolic Equilibria & Nodes; Centers; Symmetries & Reversors	p. 238		
19 (11/6)	6.5-6.6	Index Theory; Poincare-Bendixson theorem	p. 238		
20 (11/10)	6.7-6.8	Lienard Systems; Behavior at Infinity	p. 238		
21 (11/13)	7.1-7.3	Chaos: Lyapunov Exponents, Strange Attractors; Hausdorff	p. 265		
22(11/17)	0400	Dimension	n 225		
22 (11/17) 23 (11/20)	8.1-8.2	Bifurcations of Equilibria	p. 325 p. 325		
	8.3-8.4	Unfolding Vector Fields; Saddle-Node Bifurcation in 1D	-		
24 (11/24)	8.5	Normal Forms	p. 325		
25 (11/25)	8.6-8.7	Saddle-Node Bifurcation in R ^{<i>n</i>} ; Degenerate Saddle-Node Bifurcation	p. 325		
26 (12/1)	8.8-8.9	Andronov-Hopf Bifurcation; the Cusp Bifurcation	p. 325		
27 (12/4)	8.10- 8.11	Takens-Bogdanov Bifurcation; Homoclinic Bifurcations	p. 325		
28 (12/8)		Review for Final Exam			

Grading Policy

Assignment Weighting				
HW	30 %			
Midterm exam	30 %			
Final Exam	40 %			

Tentative Grading Scale			
A	88 100		
B+	82 87		
В	75 81		
C+	68 74		
С	60 67		
F	Below 60		

Course Policies

- **Email:** it is important that you regularly check your NJIT email account for class assignments and announcements from your instructor. Rutgers students should email the instructor their preferred email address at the start of the semester.
- **Homework and Quizzes:** Homework problem sets will be emailed by the instructor once a week. Homework is due on the assigned date; late homework is not accepted.